MATH 2050 C Lecture 4 (Jan 19) - Midterm date fixed Mar 2.2023 in-class 4:30-6:15pm Quiz 1 on Feb 2 Goal: R is a complete ordered field. Completeness Property: Every ϕ + S \in R which is bounded above must have a supremum in \mathbb{R} . [Note: \mathbb{Q} fails this!] Last time. we proved: Prop: $u = \sup S$ if f O $S \leq u$, V $s \in S$ (i.e. u is an upper bd) \forall ϵ > 0, \exists s' ϵ \bigcirc st. u - ϵ < s' \int_{s}^{u} \int_{s}^{u} ϵ \int_{s}^{u} \int_{s}^{u} \int_{s}^{u} ϵ \int_{s}^{u} \int_{s}^{u} ϵ \int_{s}^{u} \int_{s}^{u} \int_{s}^{u} ϵ \int_{s}^{u} \int_{s}^{u} \int_{s}^{u} \int_{s Similarly. for infimum. we have: Prop: $u = inf S$ iff $\mathbb O$ S \geqslant U \vee V s \in S (i.e. u is an lower bd) $V \epsilon$, \circ . \exists s' ϵ S s.t. $u + \epsilon$ > S' (i.e. u is the Q : What about the existence of infimum? A: It follows from the completeness property. Prop: Every Φ + $S \subseteq R$ that is bounded below must have an infimum in R. Proof: Given Φ + $S \in \mathbb{R}$. consider the subset:

 s_{40} \overline{S} ϕ + $S := \{ -S \mid s \in S \} \subseteq R$ $Claim:$ S is bdd above. Pf of Claim: SupS upper bd Since S is bold below, i.e. $S_n = \frac{1}{2}$ $\frac{1}{6}$ 7 Some lower bd ^U of S us s V se S $\Rightarrow -u \geq -s$ VseS \Rightarrow -U is an upper bd for \overline{S} ie. \overline{S} is bdd above. B y Completeness Property, $sup \overline{S}$ exists in R . $Clair$, inf S exists. inf $S = -sup S$. Pf of Claim: $Check: -sup \overline{S}$ is a lower bd for S (E_x) This is the same by reversing the arguments of the claim about. $Check: -sup S$ is the greatest lower bd for S Let ϵ so be fixed but arbitrary. $\left(\begin{array}{ccc} \text{Want to Show:} & \exists s' \in S & \text{s.t.} & -s \cup \overline{S} + \epsilon > s' \end{array}\right) = \text{I}$ $By \odot of supremum for \overline{S} .$ $sup \overline{S} - \epsilon < \overline{S}'$ for some $\overline{S}' \in \overline{S}$ By def?, we write $\bar{s}' = -s'$ for some $s' \in S$ So. Sup $\overline{S} - \overline{S} < -S' \implies -Sup\overline{S} + \overline{S} > S'$ for some $S' \in S$ which is (x)

Corollants:
\n(i) inf
$$
\left\{\frac{1}{n} : n \in \mathbb{N}\right\}
$$
 = 0
\n(ii) $\forall \epsilon > 0$, $\exists n \in \mathbb{N}$ st. $0 < \frac{1}{n} < \epsilon$
\n(iii) $\forall y_{00}$, $\exists n \in \mathbb{N}$ st. $0 < \frac{1}{n} < \epsilon$
\n(iiii) $\forall y_{00}$, $\exists n \in \mathbb{N}$ at $n-1 < y < n$
\n $\frac{1}{2} \leq \epsilon$
\n(iiv) $\forall y_{00}$, $\exists n \in \mathbb{N}$ at $n-1 < y < n$